给出平面上的N个点
对于平面上的一点p,要求任何一条通过p且不经过上面N个点的直线,其两侧的点数都不少于⌊N/3⌋ 问符合上面要求的点形成的区域的面积是多少假如一个点一侧有少于n/3个点,这个点这一侧所有点都不可能
因此对于所有右侧恰好有n/3 - 1个点的直线做半平面交就是答案
1 #include2 #include 3 #include 4 #include 5 using namespace std; 6 #define V P 7 const double eps = 1e-6; 8 inline int dcmp (double x) { 9 return x < -eps ? -1 : x > eps; 10 } 11 struct P { 12 double x, y; 13 void scan() { 14 scanf("%lf%lf", &x, &y); 15 } 16 P(double _x = 0, double _y = 0) : x(_x), y(_y) { } 17 V operator + (V a) const { 18 return V(x + a.x, y + a.y); 19 } 20 V operator - (V a) const { 21 return V(x - a.x, y - a.y); 22 } 23 V operator * (double p) const { 24 return V(p * x, p * y); 25 } 26 V operator / (double p) const { 27 return V(x / p, y / p); 28 } 29 bool operator < (P a) const { 30 return x < a.x || (dcmp(x - a.x) == 0 && y < a.y); 31 } 32 bool operator == (P a) const { 33 return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0; 34 } 35 }; 36 37 inline double dot(V a, V b) { 38 return a.x * b.x + a.y * b.y; 39 } 40 inline double len(V a) { 41 return sqrt(dot(a, a)); 42 } 43 inline double dis(P a, P b) { 44 return len(b - a); 45 } 46 inline double ang(V a, V b) { 47 return acos(dot(a, b) / len(a) / len(b)); 48 } 49 inline double cross(V a, V b) { 50 return a.x * b.y - a.y * b.x; 51 } 52 inline double area(P a, P b, P c) { 53 return cross(b - a, c - a); 54 } 55 V rot(V a, double p) { 56 return V(a.x * cos(p) - a.y * sin(p), a.x * sin(p) + a.y * cos(p)); 57 } 58 V normal(V a) { 59 double L = len(a); 60 return V(-a.y / L, a.x / L); 61 } 62 P inter(P p, V v, P q, V w) { 63 V u = p - q; 64 double t = cross(w, u) / cross(v, w); 65 return p + v * t; 66 } 67 double dis(P p, P a, P b) { 68 V v1 = b - a, v2 = p - a; 69 return fabs(cross(v1, v2)) / len(v1); 70 } 71 double dis2(P p, P a, P b) { 72 if (a == b) return len(p - a); 73 V v1 = b - a, v2 = p - a, v3 = p - b; 74 if (dcmp(dot(v1, v2)) < 0) return len(v2); 75 else if (dcmp(dot(v1, v3)) > 0) return len(v3); 76 else return fabs(cross(v1, v2)) / len(v1); 77 } 78 P proj(P p, P a, P b) { 79 V v = b - a; 80 return a + v * (dot(v, p - a) / dot(v, v)); 81 } 82 bool isInter(P a1, P a2, P b1, P b2) { 83 double c1 = cross(a2 - a1, b1 - a1), c2 = cross(a2 - a1, b2 - a1), 84 c3 = cross(b2 - b1, a1 - b1), c4 = cross(b2 - b1, a2 - b1); 85 return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; 86 } 87 bool onSeg(P p, P a1, P a2) { 88 return dcmp(cross(a1 - p, a2 - p)) == 0 && dcmp(dot(a1 - p, a2 - p)) < 0; 89 } 90 91 double area(P* p, int n) { 92 double s = 0; 93 p[n] = p[0]; 94 for (int i = 1; i < n; i ++) 95 s += cross(p[i] - p[0], p[i + 1] - p[0]); 96 return s / 2; 97 } 98 int graham(P* p, int n, P* ch) { 99 sort(p, p + n);100 int m = 0;101 for (int i = 0; i < n; i ++) {102 while (m > 1 && cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2]) <= 0) m --;103 ch[m ++] = p[i];104 }105 int k = m;106 for (int i = n - 2; i >= 0; i --) {107 while (m > k && cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2]) <= 0) m --;108 ch[m ++] = p[i];109 }110 if (n > 1) m --;111 return m;112 }113 struct L {114 P p;115 V v;116 double ang;117 L() {}118 L(P _p, V _v) : p(_p), v(_v) { ang = atan2(v.y, v.y); }119 bool operator < (const L& L) const {120 return ang < L.ang;121 }122 };123 inline int get(P a) {124 if( a.x > 0 && a.y >= 0) return 1;125 if( a.x <= 0 && a.y > 0) return 2;126 if( a.x < 0 && a.y <= 0) return 3;127 if( a.x >= 0 && a.y < 0) return 4;128 return 0;129 }130 inline bool cmp2 (L a, L b) {131 return get(a.v) < get(b.v) || (get(a.v) == get(b.v) && dcmp( cross(a.v, b.v) ) >0);132 }133 bool onLeft(L l, P p) {134 return cross(l.v, p - l.p) > 0;135 }136 P inter(L a, L b) {137 return inter(a.p, a.v, b.p, b.v);138 }139 int half(L* l, int n, P* po) {140 sort(l, l + n, cmp2);141 int h, t;142 P *p = new P[n];143 L *q = new L[n];144 q[h = t = 0] = l[0];145 for (int i = 1; i < n; i ++) {146 while (h < t && !onLeft(l[i], p[t - 1])) t --;147 while (h < t && !onLeft(l[i], p[h])) h ++;148 q[++ t] = l[i];149 if (dcmp(cross(q[t].v, q[t - 1].v)) == 0) {150 t --;151 if (onLeft(q[t], l[i].p)) q[t] = l[i];152 }153 if (h < t) p[t - 1] = inter(q[t - 1], q[t]);154 }155 while (h < t && !onLeft(q[h], p[t - 1])) t --;156 if (t - h <= 1) return 0;157 p[t] = inter(q[t], q[h]);158 int m = 0;159 for (int i = h; i <= t; i ++) po[m ++] = p[i];160 return m;161 }162 inline bool cmp (V a, V b) {163 return get(a) < get(b) || (get(a) == get(b) && dcmp( cross(a, b) ) >0);164 }165 const int N = 101000;166 int n;167 P a[N], b[N], res[N];168 L l[N];169 int main() {170 freopen("a.in", "r", stdin);171 int T;172 scanf("%d", &T);173 for (int cas = 1; cas <= T; cas ++) {174 scanf("%d", &n);175 for (int i = 0; i < n; i ++)176 a[i].scan();177 int bound = n / 3 - 1, l_c = 0;178 for (int i = 0; i < n; i ++) {179 int cnt = 0;180 for (int j = 0; j < n; j ++)181 if (j != i)182 b[cnt ++] = a[j] - a[i];183 sort(b, b + cnt, cmp);184 int t = 0, sum = 0;185 for (int j = 0; j < cnt; j ++) {186 //if (j == 1) printf("fuck %d %d\n", dcmp(cross(b[j], b[(t + 1) % cnt])), dcmp(dot(b[j], b[(t + 1) % cnt])));187 while ((dcmp(cross(b[j], b[(t + 1) % cnt])) == 1) ||188 (dcmp(cross(b[j], b[(t + 1) % cnt])) == 0 &&189 dcmp(dot(b[j], b[(t + 1) % cnt])) == -1)) t = (t + 1) % cnt, sum ++;190 if (cnt - (sum + 1) == bound) l[l_c ++] = L(a[i], b[j]);191 //if (i == 0) printf("%d\n", sum);192 if (t == j) t ++;193 else {194 while (dcmp(cross(b[j], b[(j + 1) % cnt])) == 0) j ++, sum --;195 sum --;196 }197 }198 }199 //printf("%d\n", l_c);200 //for (int i = 0; i < l_c; i ++)201 // printf("%lf %lf %lf %lf\n", l[i].p.x, l[i].p.y, l[i].v.x, l[i].v.y);202 int ans = half(l, l_c, res);203 //printf("%d\n", ans);204 //for (int i = 0; i < ans; i ++)205 // printf("%lf %lf\n", res[i].x, res[i].y);206 printf("Case #%d: %.6lf\n", cas, area(res, ans));207 }208 return 0;209 }